Semiconductor Engineering 1

Basic Course Information	01005098	Subject Catagory	Compulsory (M	1
Class Format	Lecture	Credit Type and Number of Credits	1	
Department Period of Study	Mechatronics Semester 1	Student Category Cleanse per Week	Year 5 1	
Required Materials	TBA Hitoshi Nishizawa	Jirapat Anuntahirunra		
Course Objective				
The course provides students with intro devices including pn-junction and pnp/	duction and basic knowledge non-junctions.	of physics in Semicondu	uctors and Semiconductor	
Evaluation (Rubric)	Ideal Level of Achievement (Very Good)	Standard Level of Achievement (Good)	Unacceptable Level of Achievement (Fail)]
Electrons' behavior in semiconductors	Able to explain electrons' behavior in semiconductors	Able to explain electrons' behavior in	Need help explaining how electrons behave in	
Physics of PN junctions	Able to describe the characteristics of PN	Able to describe the characteristics of PN	Cannot use the band theory to describe the	
Physics of bipolar transistors	theory in detail. Able to describe the	band theory. Able to describe the	characteristics of HN junctions. Cannot use the band theory	
Physics of LEDs and solar cells	characteristics of bipolar transistors using the band theory in detail.	characteristics of bipolar transistors using the band theory.	to describe the characteristics of bipolar transistors.	
	characteristics of LEDs and solar cells using the band theory in detail.	characteristics of LEDs and solar cells using the band theory.	explain the characteristics of LEDs or solar cells,	1
M(2) Ability to design, propose and d	M(2) Ability to design, propose and develop electrical and electronic systems for robotica/ mechatronic systems			
Presse change				
Teaching Method]
Outline		Lecture and group work		
Class Format: Please Note :	Students are require	d to ask any questions after	sufficient self-learning	
Course Plan Semester 1	Contents and Mati	nod of Course	Goala	Related MCC
1st Week	History of semiconductor dev vacuum tubes to semicondu	velopment (from ctors)	Can explain the outline of semiconductor development history,	V-D 4
2nd Week	Solid state physics (electron volt, duality of electrons: waves and particles)		Can explain the duality of electrons.	N-C 2 #:
3rd Week	Atomic structure and crystal structure of semiconductors		Can explain the atomic and crystal structure of semiconductors,	
				V-C 3 55
4th Week	Electronic band structure and the behavior of electrons		Can explain the electronic band structure of semiconductors,	V-C 3 56
5th Week	Carrier concentration in semiconductors and its effect on conductivity		Can explain the effect of carrier concentration on conductivity.	V-C 3 56 V-C 3 58
6th Week	Carrier generation/recombination, diffusion current, and PN junction		Can explain how PN Junction works.	V-C 3 59 V-C 3 60
7th Week	School event 5			
8th Week	Preparing for Mid-term examination		Review problems for the mid term examination,	
9th Week	Mid-term examination		Can slove problems at the mid-term examination.	
10th Week	Mid-term examination week			
11th Week	Return exam papers and feedback		Review and summarize the learning.	
12th Week	Quantitative analysis of a PN junction, and reverse breakdown current		Can explain the inner resitance and reverse current of a PN junction.	V-C 3 60
13th Week	National Holiday			
14th Week	Metal-semiconductor contact and Schottky barrier		Can explain the voltage- current characteristics at metal-semiconductor contacts.	
15th Week	Fundamental function of bipoler junction transistors		Can explain the electronic behavior of bipolar junction transistors using the band theory.	V-C 3 61
16th Week	Amplifier circuits using a bloolar junction transistor		Can explain the electronic behavior of bipolar junction transistors using the band theory.	V-C 3 61
17th Week	Dynamic characteristics of bibolar junction transistors		Can explain the switching phenomena of bipolar junction transistors,	
18th Week	Light emitting diodes (LED) and Solar cells		Can estimate the collector current of bipolar junction transistors.	
19th Week	Preparing for final examination		Beview related circuit problems for the final examination.	
20th Week	Final Examination		Can slove problems at the final examination,	Do
	Examination	Quiz	Mutual Evolucions botwson students	Do not Report Particle Other
meas: ADIEV	0.5	20		253