Introduction to Engineering Design

Basic Course Information			
Course Number	01005073	Subject Category	Compulsory (M)
Class Format	Lecture	Credit Type and Number of Credits	1
Department	Mechatronics	Student Category	Year 1
Period of Study	Semester 1	Classes per Week	2
Required Materials			
Instructor	Sanit Teawchim		

Course Oblicative
The course provides students with an introduction of Engineering design. The concept of Engineering design is very morostart to solve problems and develop anothers. Student stude mechanises behaviour from the viewcoint of morostart to solve problems and develop anothers. Student stude mechanises behaviour from the viewcoint of solvers and the concept of the contraction of the contraction

Evaluation (Rubrio)	Ideal Level of Achievement (Very Good)	Standard Level of Achievement (Good)	Unacceptable Level of Achievement (Fail)
	Ideal Level of Achievement (Very Good)	Standard Level of Achievement (Good)	Unacceptable Level of Achievement (Fail)
Understanding Engineering Deeign Concept	Demonstrates very good knowledge and understanding of Engineering Design concept	Demonstrates good knowledge and understanding of Engineering Design concept	Lacks the appropriate knowledge and understanding of Engineering Design concept
Understanding Project life-cycle process, Reliability, and Risk management	Demonstrates very good knowledge and understanding of Project life- cycle process. Reliability, and Risk management	Demonstrates good knowledge and understanding of Project life-cycle process, Reliability, and Risk management	Lacks the appropriate knowledge and understanding of Project life-cycle process. Reliability, and Risk management
Application of Engineering Design concept	Apply Engineering Design to products/systems properly to analyze for improvement	Apply Engineering Design to products/systems to analyze	Improper application of Engineering Design to products/systems
Presentation	Presentation sides are well organised. Effectively oresents ideas and information in logical.	Presentation sildes are organised, Presents ideas and information in logical sequence which audience can follow	Presentation sildes are not well organised. Presents ideas and information, but the audience feel difficulty to follow the sequence or .
Group work	Almost always listens to and support others. Shares ideas with others positively, and help the team to solve the problem.	Usually or try to listen to others, Shares ideas with, and positrively supports others.	Rarely listens to others. Do not share with, and supports others. Often is not a good team player.

Philationals with Learning Outcomes

Mit1 Ability to design, propose and develop robotic/mortatronic sections to solve specific problems

MIZ2 Ability to design, propose and develop electrical and electronic sestems for cricicitiza/ machitaronic systems

MIZ3 Ability to design, propose and develop machinical solutional/ eyetams for robotic/ mechatronic systems

Please Note :	Students are required to ask any questions aff	Į	
Course Plan Semester 1			[
Semester 1	Contents and Method of Course	Goals	Related MCC
Week 1	Introduction to Engineering Deelgn	Explaining Introduction to Engineering Design	■-H 8 2
Week 2	Basic Concept of Engineering Design	Explaining Basic Concept of Engineering Design	III-H 8 2 III-H 8 3 III-H 8 3
Week 3	Project life-cycle process flow (1)	Explaining Project life-cycle process flow (1)	W-D 4 1
Week 4	Project life-cycle process flow (2)	Explaining Project life-cycle process flow (2)	W-D 4 1
Week 5	Case study 1 (1)	Explaining Case study 1 (1)	W-E 5 1 W-E 5 2 W-E 5 2
Week 6	Case study 1 (2)	Explaining Case study 1 (2)	W-E 5 2 W-E 5 2 W-E 5 2
Week 7	The Engineer and Design of Products	Explaining The Engineer and Design of Products	K-A 1 1
Week 8	Reliability Engineering	Explaining Reliability Engineering	K-A 1 2
Week 9	Midterm Examination	For week 1 - 8	
Week 10	Risk menagement	Explaining Risk management	K-A 1 2
Week 11	Development of specification	Explaining Development of specification	N-B 2 4
Week 12	Fessibility study	Explaining Feesibility study	N-B 2 5
Week 13	Cost Aspect of System Engineering	Explaining Cost Aspect of System Engineering	[(-A 1 1
Week 14	Intellectual properties: patent and others	Explaining Intellectual properties patent and others	W-F 6 1
Week 15	Patent search 1	Explaining Patent search 1	W-F 6 1
Week 16	Patent search 2	Explaining Patent search 2	W-F 6 1
Week 17	Case study practice 1	Explaining Case study practice 1	
Week 18	Case study practice 2	Explaining the past work	
Week 19	Final Examination	For week 11 - 18	
Week 20	Wrap-up of the semester (Review)	Review and summarize learning	