Digital Circuit 1
Basic Course Information

Course Number	02005072	Subject Category	Compulsory (C)
Class Format	Lecture	Credit Type and Number of Credits	1
Department	Computer	Student Category	Year 1
Period of Study	Semester 2	Classes per Week	2
Required Materials			
Instructor	Dr.Thanyawarat Pawasopon		

Course Objective

The course provides students with introduction and basic knowledge of number base systems, fundamental logical operations, logical functions, the concept of the simplification of logical expressions and the combinational logic circuits.

Evaluation(Rubric)	Ideal Level of Achievement (Very Good)	Standard Level of Achievement (Good)	Unacceptable Level of Achievement (Fail)
1. Being able to perform number base systems	Demonstrates very good skills to execute essential of convert and calculate number base	Demonstrates good skills to execute basic of convert and calculate number base	Lacks of skills to execute basic of convert and calculate number base
2. Being able to perform fundamental losical operations	Demonstrates very good skills to perform fundamental logical operations, and also having very good ability to apply the skills to execute essential operations	Demonstrates good skills to perform fundamental logical operations, and also having good ability to apply the skills to execute basic	Lacks of skills to perform fundamental logical operations, and also lack of ability to apply the skills to execute basic operations
operations			

7. Being able to design any combinational logic circuits	Demonstrates both the essential ability to design combinational logic circuits, and the very good skill about the simplification, and also having very good abilty to apply the understandings and skills to design essential combinational logic circuits	Demonstrates both the essential ability to design combinational logic circuits, and the good skill about the simplification, and also having good abilty to apply the understandings and skills todesign basic combinational logic circuits	Lack neither the essential ability to design combinational logic circuits, nor the skill about the simplification

Relationship with Learning Outcomes
C(1) Ability to operate and administer the computer software and hardware
Please change
Please change

Teaching Method	
Outline:	Repeat of Drill-Explanation-Drill
Class Format:	Lecture and Drill
Please Note :	Students are required to ask any questions after sufficient self-learning

			Related MCC		
Course Plan Semester 2	Contents and Method of Course	Goals	Related MCC		
1st week (Nov 7th -online)	Introduction of disital circuit, Point of Difference between Digital and Analog and Number base systems	Being able to discuss both about the point of difference between digital and analog, and also able to explain about fundamental of number base system	V-D	3	31
			V-D	3	32
			V-D	3	34
2nd week (Nov 14th - online)	Arithmetic Operations of Binary Numbers	Being able to understand about binary arithmetic operations, especially the usage of complements, and also having skills to perform arithmetic subtraction using 2's complement	V-D	3	32
			V-D	3	33
3rd week (Nov 21th)	Logical Operations: Configuration and Behavior of Logic Gates		V-D	3	35
		Being able to explain about	V-D	3	36
		the functions both of			
		logic gates using truth tables			
4th week (Nov 28th)	Theorems of Boolean Algebra(1)		V-D	3	35
		Being able to explain about	V-D	3	36
		the theorems of boolean			
		algebra using truth tables and/or Venn diagrams			
5th week (Dec 5th)	Hollydays				
6th week (Dec 12th)	Theorems of Boolean Algebra(2)	Analyzing and simplifying the logic circuits by using Boolean Algebra	V-D	3	37
			V-D	3	38
7th week (Dec 19th)	Simple SOP (Sum of Products) and Designing Logic Circuits of Simple SOP	Being able to explain both about the simple SOP (sum of products) and able to design logic circuits of simple SOP	V-D	3	37
			V-D	3	38
			V-D	3	39
			V-D	3	40
			V-D	3	41
			V-D	3	37
		Being able to explain both	V-D	3	38
8th week	Simple POS (Product of Sum) and Designing Logic	about the simple POS (Drndint of $\mathrm{C}_{1} \mathrm{im}$) and ahlo	V-D	3	39

	Examination	Quiz	Mutual Evaluations between students	Report	Portfolio
	Other				
Basic Ability	30	10		10	
Technical Ability	30	10	5		
Interdisciplinary Ability					

